

Since P can be embedded in a free module, we may as well assume that P is free. Since M is f.g., we may also assume that $P \cong R^n$ for some finite n . Suppose M can be generated by m elements. By adding copies of R to P , we may assume that $n \geq m$. Then there exists $f \in \text{End}_R(P)$ with $f(P) = M$. Now

$$\text{End}_R(P) \cong \text{End}_R(R^n) \cong M_n(R)$$

is a von Neumann regular ring. Therefore, there exists $g \in \text{End}_R(P)$ such that $f = fgf$. Then $e = fg$ is an idempotent endomorphism of P . We have $f(P) = fgf(P) \subseteq e(P) \subseteq f(P)$, so $M = f(P) = e(P)$ is a direct summand of P , with direct complement $(1-e)(P)$