1) False: $y=x^{2}$ has no fixed points on $(0,1)$, since $x \neq x^{2}$ is always on this set.
2) True: The derivative of the function $\log x$ is bounded on $(0.5,+\infty)$. So it is uniformly continious
3) True: Given any sequence $\left\{x_{n}+y_{n}\right\}$ on $\mathrm{A}+\mathrm{B}$ we have:

$$
\begin{aligned}
& x_{n} \xrightarrow[n \rightarrow \infty]{ } x \\
& y_{n} \xrightarrow[n \rightarrow \infty]{ } y \\
& \left|x_{n}+y_{n}-x-y\right| \leq\left|x_{n}-x\right|+\left|y_{n}-y\right| \xrightarrow[n \rightarrow \infty]{ } 0 \\
& \lim \left(x_{n}+y_{n}\right)=x+y \in A+B
\end{aligned}
$$

Thus, it is closed.
4) False: is quite easy to see that the function $f(x)=\sin \left(x^{\wedge} 2\right)$ for x in R is bounded, continuous but not uniform continuous since $[\operatorname{sqrt}(\mathrm{Pi} / 2+(\mathrm{k}+1) \mathrm{Pi})-\operatorname{sqrt}(\mathrm{Pi} / 2+(\mathrm{k}+1) \mathrm{Pi})]->0$ as $\mathrm{k}->\infty$
5) True: f_n are continious over closed interval, so they are uniformly bounded, and since they are all integrable, and their limit is too integrable, then we integral and limit sing commutes.

