- 1) False: $y = x^2$ has no fixed points on (0,1), since $x \neq x^2$ is always on this set.
- 2) True: The derivative of the function $\log x$ is bounded on $(0.5, +\infty)$. So it is uniformly continious
- 3) True: Given any sequence $\{x_n + y_n\}$ on A+B we have:
- $x_n \xrightarrow[n \to \infty]{} x$

$$y_n \xrightarrow[n \to \infty]{} y$$
$$|x_n + y_n - x - y| \le |x_n - x| + |y_n - y| \xrightarrow[n \to \infty]{} 0$$

 $\lim (x_n + y_n) = x + y \in A + B$

Thus, it is closed.

4) False: is quite easy to see that the function $f(x) = sin(x^2)$ for x in R is bounded, continuous but not uniform continuous since [sqrt(Pi/2 + (k+1)Pi) - sqrt(Pi/2 + (k+1)Pi)] ->0 as k-> ∞

5) True: f_n are continious over closed interval, so they are uniformly bounded, and since they are all integrable, and their limit is too integrable, then we integral and limit sing commutes.