Question \#15429 Calculate the mean, variance,skewness and kurtosis for the probability density function with an 'unit' distribution $[0,1]$.
Solution. Mean of a $\xi \sim \operatorname{Unif}[0,1] m=\mathrm{E} \xi=\int_{0}^{1} x d x=1 / 2$, second moment is $\mathrm{E} \xi^{2}=\int_{0}^{1} x^{2} d x=1 / 3$, thus the variance is $\sigma^{2}=1 / 3-1 / 4=1 / 12$. Next, calculate the third moment $\mathrm{E} \xi^{3}=\int_{0}^{1} x^{3} d x=1 / 4$, thus the skewness is $\gamma_{1}=$ $\frac{1 / 4-3 / 2 \cdot 1 / 12-1 / 8}{(1 / 12)^{3 / 2}}=0$. To calculate kurtosis, first calculate the central fourth moment, clearly it is equals $\int_{0}^{1}(x-1 / 2)^{4} d x=2 \int_{0}^{1 / 2} x^{4} d x=1 /\left(5 \cdot 2^{4}\right)$, next $\gamma_{2}=\frac{\mathrm{E} \xi^{4}}{\sigma^{4}}-3=\frac{1 / 2^{4}}{5 / 12^{2}}-3=144 /(5 \cdot 16)-3=-6 / 5=-1.2$

