a)
$\forall s(x) \in S: s(x)=2 a(x)+x b(x)$
$s(0)=2 a(0)+0=2 a(0) \in 2 \mathbb{Z} \Rightarrow s(x) \in\{f(x) \mid f(0) \in 2 \mathbb{Z}\}$
$\forall s(x) \in\{f(x) \mid f(0) \in 2 \mathbb{Z}\} \Rightarrow s(x)=2 a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \in S$
$S=\{f(x) \mid f(0) \in 2 \mathbb{Z}\}$
b)

S can be expressed in form $S=2 \mathbb{Z}[x]+x \mathbb{Z}[x]$, so it is finitely generated ideal (by definition) in domain $\mathbb{Z}[x]$.
c)

If $S=d(x) \mathbb{Z}[x]$ then $d(x)$ have to divide both 2 and x, but only constants are common divisors. So $d(x)=$ const , and only possible constants are 1 and -1 . So there is no $\mathrm{d}(\mathrm{x})$ with this property. $\mathrm{Z}[\mathrm{x}]$ is not PID.

