We will prove it by induction:

1. When $n=0:(2 \cdot 0+1)^{2}=1=\frac{(0+1)(2 \cdot 0+1)(2 \cdot 0+3)}{3} \Rightarrow$ True.
2. Let take that if $\mathrm{n}=\mathrm{k}$ then the given formula is also true. Then we will have:

$$
n=k: \sum_{n=0}^{k}(2 \cdot n+1)^{2}=\frac{(k+1)(2 \cdot k+1)(2 \cdot k+3)}{3} \Rightarrow \text { True }
$$

3. Let show that if $\mathrm{n}=\mathrm{k}+1$ the formula is true too:

$$
\begin{aligned}
& n=k+1: \sum_{n=0}^{k+1}(2 \cdot n+1)^{2}=\sum_{n=0}^{k}(2 \cdot n+1)^{2}+(2 \cdot k+3)^{2}= \\
& =\frac{(k+1)(2 \cdot k+1)(2 \cdot k+3)}{3}+(2 \cdot k+3)^{2}=\frac{(2 \cdot k+3)\left(2 k^{2}+3 k+1+6 k+9\right)}{3}= \\
& =\frac{(2 \cdot k+3)\left(2 k^{2}+9 k+10\right)}{3}=\frac{(2 \cdot k+3)(2 \cdot k+5)(k+2)}{3} \Rightarrow \text { True. }
\end{aligned}
$$

So, we proved that this formula is true for every nonnegative integer n.
Answer: Proved.

