Question #15309 Find radius of curvature at point (s,ψ) of the curve $s=a\log\tan(\pi/4+\psi/4).$.

Solution. It is impossible to calculate the radius of curvature at any point (s, ψ) , since tan could be negative. The formula to calculate radius of curvature(in polar coordinates)

$$R = \frac{(r^2 + r_\psi^2)^{3/2}}{|r^2 + 2r_\psi^2 - rr_{\psi\psi}|}$$

Here $r_{\psi} = r'_{\psi}$. $r_{\psi} = a \frac{1}{\tan(\pi/4 + \psi/4)} \frac{1}{\cos^2(\pi/4 + \psi)}$, $r'' = a/16(\sec^2(\pi/4 + \psi/4) + \psi/4) - \csc^2(\pi/4 + \psi/4))$. If you want to evaluate at some point. First evaluate $r, r_{\psi}, r_{\psi,\psi}$ and put it to the original equation. We took, for instance, $\psi = \pi/3$ and got $2\sqrt{\frac{a^2 + 3}{9\left|\frac{a}{(a^2+3)^{3/2}}\right|^2 + 3\left|\frac{a^2}{(a^2+3)^{3/2}}\right|^2}}$.