Question 1. Let $C(\mathbb{R})$ denote the ring of all continuous real-valued functions on \mathbb{R}, with the operations of pointwise addition and pointwise multiplication. Which of the following form an ideal in this ring?
(a) The set of all C^{∞}-functions with compact support.
(b) The set of all continuous functions with compact support.
(c) The set of all continuous functions which vanish at infinity, i.e. functions f such that $\lim _{x \rightarrow \infty} f(x)=0$

Solution. Obviously, all these three subsets of $C(\mathbb{R})$ are subgroups of the additive group of $C(\mathbb{R})$. Consider the result of multiplication of any element of each subset by an element of $C(\mathbb{R})$ and verify whether it is again an element of the subset.
(a) Consider $f \in C^{\infty}(\mathbb{R})$ with compact support, such that $f(0) \neq 0$, and $g(x)=|x|$. It is obvious, that $g \in C(\mathbb{R})$. Prove that $f g \notin C^{\infty}(\mathbb{R})$. Indeed, the right derivative of $f g$ at $x=0$ is

$$
\left.(f(x) x)^{\prime}\right|_{x=0}=\left.\left(f^{\prime}(x) x+f(x)\right)\right|_{x=0}=f(0)
$$

while the left derivative of $f g$ at $x=0$ is

$$
\left.(-f(x) x)^{\prime}\right|_{x=0}=\left.\left(-f^{\prime}(x) x-f(x)\right)\right|_{x=0}=-f(0)
$$

Since $f(0) \neq 0$, the right derivative does not coincide with the left one. So, $f g$ is not differentiable at $x=0$ and thus $f g \notin C^{\infty}(\mathbb{R})$. This shows that the set of C^{∞}-functions with compact support is not an ideal in $C(\mathbb{R})$.
(b) Let $f \in C(\mathbb{R})$, supp $f=\bar{A}$, where $A=\{x \in \mathbb{R} \mid f(x) \neq 0\}, g \in C(\mathbb{R})$, supp $g=\bar{B}$, where $B=\{x \in \mathbb{R} \mid g(x) \neq 0\}$. Obviously, $f g \in C(\mathbb{R})$. Furthermore, supp $f g=\overline{A \cap B} \subset \bar{A} \cap \bar{B}=$ supp $f \cap$ supp g. So, if supp f is compact, then supp $f g$ is a closed subset of compact and therefore it is also compact. Thus, the set of all continuous functions with compact support is an ideal in $C(\mathbb{R})$.
(c) Consider $f(x)=e^{-x}$ and $g(x)=e^{x}$. Note that $f, g \in C(\mathbb{R})$ and f vanishes at infinity. But $f(x) g(x)=1$, so $f g$ does not vanish at infinity. Thus, this set is not an ideal in $C(\mathbb{R})$.
Answer:
(a) it is not an ideal;
(b) it is an ideal;
(c) it is not an ideal.

