Question \#15222 Over a three year period in Smallsville, Judge Adams saw 37% of the cases, Judge Brown saw 39% of the cases and Judge Carter saw the remainder of the cases. Nine percent of Judge Adams' cases were appealed, 8% of Judge Browns's cases were appealed, and 6% of Judge Carters cases were appealed.

Given a randomly selected case from this three year period was not appealed, what is the probability the judge in the case was not Judge Carter?
Solution. Denote by A, B, C respectively respectively the events that random case was seen by Adams, Brown, Carter and by $N A$ the randomly selected case was not appealed. The condition implies that $P(A)=0.37, P(B=0.39, P(C)=0.24)$ and $P(N A \mid A)=0.91, P(N A \mid B)=0.92, P(N A \mid C)=0.94$. We are to calculate $P(\bar{C} \mid N A)=1-P(C \mid N A)$, using Bayesian formula one can get the last equals $1-$ $\frac{P(N A \mid C) P(C)}{P(N A \mid A) P(A)+P(N A \mid B) P(B)+P(N A \mid C) P(C)}=1-\frac{0.94 \cdot 0.24}{0.91 \cdot 0.37+0.92 \cdot 0.39+0.94 \cdot 0.24} \approx$ $1-0.245=0.755$.
Answer Approximately 0.76.

