Question \#15204Prove that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ defined by $a_{n}=\frac{3 n+7}{4 n+8}$ is a monotonic sequence.
Solution. One has that for $n \geq 2, a_{n}-a_{n-1}=\frac{3 n+7}{4 n+8}-\frac{3 n+4}{4 n+4}=\frac{1}{4}\left(\frac{(3 n+7)(n+1)-(3 n+4)(n+}{(n+2)(n+1)}\right.$ $\frac{3 n^{2}+10 n+7-3 n^{2}-10 n-8}{4(n+2)(n+1)}=-\frac{1}{4(n+2)(n+1)}$, thus $\left\{a_{n}\right\}_{n \geq 1}$ is strictly decreasing sequence,

