Vector A has magnitude 16.0 and vector B has magnitude 13.0. The scalar product of $A B$ is 73.0. What is the cross product of A and B.

Solution:

$\overrightarrow{|A|}=16.0, \overrightarrow{|B|}=13.0$ and $(\vec{A}, \vec{B})=73.0$
The cross product of A and B is

$$
[\vec{A}, \vec{B}]=\overrightarrow{|A|} \cdot \overrightarrow{|B|} \cdot \sin \alpha
$$

where α - is an angle between \vec{A} and \vec{B}.

$$
\begin{gathered}
(\vec{A}, \vec{B})=\overrightarrow{|A|} \cdot \overrightarrow{|B|} \cdot \cos \alpha \rightarrow \cos \alpha=\frac{(\vec{A}, \vec{B})}{\overrightarrow{|A|} \cdot \overrightarrow{B \mid}}=\frac{73}{13 \cdot 16}=0.351 \rightarrow \alpha=69,452^{\circ} \\
{[\vec{A}, \vec{B}]=\overrightarrow{|A|} \cdot \overrightarrow{|B|} \cdot \sin \alpha=16 \cdot 13 \cdot \sin \left(69,452^{\circ}\right)=68,769}
\end{gathered}
$$

Answer: $[\vec{A}, \vec{B}]=68,769$.

