Question 1. Find 2 functions f and g such that the limit as x approaches 0 of f(x) and the limit as x approaches 0 of g(x) do not exist, but the limit as x approaches 0 of f(x) + g(x) does exist.

Solution. Simply take f(x), such that $\lim_{x\to 0} f(x)$ does not exist, and set g(x) = -f(x). Then $\lim_{x\to 0} g(x) = \lim_{x\to 0} (-f(x))$ also does not exist, since otherwise it would imply that there is $\lim_{x\to 0} f(x) = -\lim_{x\to 0} g(x)$. Furthermore, f(x) + g(x) = 0, so $\lim_{x\to 0} (f(x) + g(x)) = 0$. For example, one can consider $f(x) = \sin(1/x)$. If $x = \frac{1}{\pi n}$, $n \in \mathbb{Z}$, then f(x) = 0, but if $x = \frac{1}{\pi/2 + 2\pi n}$, $n \in \mathbb{Z}$, then f(x) = 1, so $\lim_{x\to 0} f(x)$ is not defined.