Question 1. Find 2 functions f and g such that the limit as x approaches 0 of $f(x)$ and the limit as x approaches 0 of $g(x)$ do not exist, but the limit as x approaches 0 of $f(x)+g(x)$ does exist.

Solution. Simply take $f(x)$, such that $\lim _{x \rightarrow 0} f(x)$ does not exist, and set $g(x)=$ $-f(x)$. Then $\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0}(-f(x))$ also does not exist, since otherwise it would imply that there is $\lim _{x \rightarrow 0} f(x)=-\lim _{x \rightarrow 0} g(x)$. Furthermore, $f(x)+g(x)=$ 0 , so $\lim _{x \rightarrow 0}(f(x)+g(x))=0$. For example, one can consider $f(x)=\sin (1 / x)$. If $x=\frac{1}{\pi n}, n \in \mathbb{Z}$, then $f(x)=0$, but if $x=\frac{1}{\pi / 2+2 \pi n}, n \in \mathbb{Z}$, then $f(x)=1$, so $\lim _{x \rightarrow 0} f(x)$ is not defined.

