We have next picture of three vertices of the rectangle:
If we take $A=(3,2), B=(-4,2)$ and $C=(4,-5)$, then:

Then we can see that it will be parallelogram and we can find vertices D :
Line AD will be parallel to line BC and AB will be parallel to the line CD . So, we can find:

$$
\begin{aligned}
& A B: y=2,-4 \leq x \leq 3 \\
& B C: \frac{x+4}{8}=\frac{y-2}{-7} \Rightarrow y=-\frac{7}{8} \cdot x-\frac{3}{2}
\end{aligned}
$$

So we have that line CD has equation $y=c$, where $c=$ const and going through the point $\mathrm{C}=(4,-5)$. So, we can say that line CD has equation: $y=-5$.

The line AD has equation $y=-\frac{7}{8} \cdot x+c$, where $c=$ const and going through the point $\mathrm{A}=(3,2)$. So: $y(3)=-\frac{7}{8} \cdot 3+c=2 \Rightarrow c=2+\frac{21}{8}=\frac{37}{8}$ and line AD has equation: $y=-\frac{7}{8} \cdot x+\frac{37}{8}$.

And we can find point D :

$$
\begin{aligned}
& A D \cap C D: \\
& y=-\frac{7}{8} \cdot x+\frac{37}{8}=-5 \Rightarrow-\frac{7}{8} \cdot x=-\frac{77}{8} \Rightarrow x=11, y=-5 \Rightarrow \\
& \Rightarrow D=(11,-5)
\end{aligned}
$$

And we have such rectangle:

Answer: $D=(11,-5)$.

