$$
3 x y^{\prime \prime}+(1-x) y^{\prime}-y=0
$$

Since the differential equation has non-constant coefficients, we cannot assume that a solution is in the form $y=e^{\alpha x}$. Instead, we use the fact that the second order linear differential equation must have a unique solution. We can express this unique solution as a power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

If we can determine the a_{n} for all n, then we know the solution. Fortunately, we can easily take derivatives:

Notice that 0 is a singular point of this differential equation. We will not be able to find a solution in the form $\sum a_{n} y^{n}$, since the solution will not be differentiable at zero. Alternatively, we find a solution in the form

$$
y=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

This is the power series centered about $\mathrm{x}=1$, which is not a singular point. Now take derivatives

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \\
3 x \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+(1-x) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
\end{gathered}
$$

We would like to combine like terms, but there are two problems. The first is the powers of x do not match and the second is that the summations begin in differently. We will first deal with the powers of x . We shift the index of the first, second and last summation by letting

$$
\begin{aligned}
& 3(x-1+1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}-(x-1) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0 \\
& 3(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+3 \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \\
& \quad-(x-1) \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0 \\
& 3 \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1}+3 \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n} \\
& \quad-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sum_{n=1}^{\infty} n(n+1) a_{n+1}(x-1)^{n}+3 \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n}-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n} \\
& \quad-\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
\end{aligned}
$$

Some summation begins at1while the first and second begin at 0 . We deal with this by pulling out the $1^{\text {th }}$ term.

$$
\begin{gathered}
3 \sum_{n=1}^{\infty} n(n+1) a_{n+1}(x-1)^{n}+3 * 2 a_{2}+3 \sum_{n=1}^{\infty}(n+2)(n+1) a_{n+2}(x-1)^{n} \\
-\sum_{n=1}^{\infty} n a_{n}(x-1)^{n}-a_{0}-\sum_{n=1}^{\infty} a_{n}(x-1)^{n}=0 \\
6 a_{2}-a_{0}+\sum_{n=1}^{\infty}\left[3 n(n+1) a_{n+1}+3(n+2)(n+1) a_{n+2}-n a_{n}-a_{n}\right](x-1)^{n}=0 \\
a_{2}=\frac{1}{6} a_{0} \\
a_{n+2}=\frac{a_{n}-3 n a_{n+1}}{3(n+2)}
\end{gathered}
$$

We need two pair linearly independent solution, so assume

Assume $a_{0}=1, \quad a_{1}=0, \quad$ then $\quad a_{2}=\frac{1}{6}, \quad a_{3}=-\frac{1}{18}$

$$
y_{1}=1+\frac{1}{6} x^{2}-\frac{1}{18} x^{3}+\cdots
$$

Assume $a_{0}=1, \quad a_{1}=1 \quad$ then $a_{2}=\frac{1}{6} \quad a_{3}=\frac{1}{18}$

$$
y_{2}=1+x+\frac{1}{6} x^{2}+\frac{1}{18} x^{3}+\cdots
$$

General solution is

$$
y=C_{1} y_{1}+C_{2} y_{2}
$$

