Question 1. Prove that abelian group of order $p q$ (p, q are distinct primes) is cyclic.

Solution. Let G be an abelian group of order $p q$. By the fundamental theorem of finite abelian groups we have two cases: either $G \cong \mathbb{Z}_{p q}$ (the cyclic group of order $p q$), or $G \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$ (the direct sum of cyclic groups of orders p and $q)$. Prove that $Z_{p} \oplus \mathbb{Z}_{q} \cong \mathbb{Z}_{p q}$. Indeed, let a generate \mathbb{Z}_{p}, i. e. $p a=0$ in \mathbb{Z}_{p}, and b generate \mathbb{Z}_{q}, i. e. $q b=0$ in \mathbb{Z}_{q}. Then consider the pair $(a, b) \in \mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$. Note that

$$
p q(a, b)=(p q a, p q b)=(q(p a), p(q b))=(q \cdot 0, p \cdot 0)=(0,0)
$$

therefore, the order of (a, b) divides $p q$. Since $(a, b) \neq(0,0)$, then the order cannot be equal to 1 . It cannot be also equal to p or q, because $q a \neq 0$ and $p b \neq 0$ (for example, $q a=0$ would imply that p divides q, which is impossible, since p and q are distinct primes). Therefore, the order of (a, b) is $p q$ and it is the order of $\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$. Thus, $\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$ is the cyclic group, generated by (a, b).

