Question 1. Prove that if elements a, b of group G commute, then LCM of their orders is multiple of order of their product.

Solution. Suppose a and b have finite orders, say m and n, respectively (for the infinite orders this statement does not make sense). Set $k=\operatorname{LCM}(m, n)$. Since k is divisible by m and n, we conclude that

$$
a^{k}=\left(a^{m}\right)^{\frac{k}{m}}=e^{\frac{k}{m}}=e, \quad b^{k}=\left(b^{n}\right)^{\frac{k}{n}}=e^{\frac{k}{n}}=e
$$

where e denotes the identity of G. We are given that a and b commute, therefore

$$
(a b)^{k}=a^{k} b^{k}=e \cdot e=e
$$

Thus, the order of $a b$ divides k, i. e. k is a multiple of the order of $a b$.

