Question 1. Use mathematical induction to show that $n!\geq 2^{n-1}$ for $n=$ $1,2, \ldots$.

Solution. The base of induction: if $n=1$, then $n!=1$! $=1$ and $2^{n-1}=$ $2^{1-1}=2^{0}=1$, so $n!=2^{n-1}$ in this case.

The induction step: suppose $n!\geq 2^{n-1}$ for some $n \geq 1$. Prove that $(n+1)!\geq 2^{(n+1)-1}$. Indeed,

$$
(n+1)!=n!\cdot(n+1) \geq 2^{n-1} \cdot 2=2^{n}=2^{(n+1)-1}
$$

as desired.

