Question 1. Use mathematical induction to show that $n! \geq 2^{n-1}$ for n = $1, 2, \ldots$

Solution. The base of induction: if n = 1, then n! = 1! = 1 and $2^{n-1} = 1$

 $2^{1-1} = 2^0 = 1$, so $n! = 2^{n-1}$ in this case. The induction step: suppose $n! \ge 2^{n-1}$ for some $n \ge 1$. Prove that $(n+1)! \ge 2^{(n+1)-1}$. Indeed,

$$(n+1)! = n! \cdot (n+1) \ge 2^{n-1} \cdot 2 = 2^n = 2^{(n+1)-1},$$

as desired.

1