Question 1. Prove that polynomial ring of 2 independent variables over field is not a PID.

Solution. Let $R[x, y]$ be the mentioned polynomial ring. Consider the ideal $I=\langle x, y\rangle=\left\{x P_{1}+y P_{2} \mid P_{1}, P_{2} \in R[x, y]\right\}$. Suppose there is a polynomial $P \in R[x, y]$ such that $I=P \cdot R[x, y]$. Then any element of I should be divisible by P, in particular, P should divide x and y. But x and y have degree 1. Therefore, the degree of P should not exceed 1. So, $P=a x+b y+c$ for some scalars $a, b, c \in R$. Since P divides x, we conclude that $b=c=0$. But the fact that P divides y implies $a=c=0$. Thus, $a=b=c=0$ and so $P=0$. Therefore, $I=\{0\}$, which is a contradiction (I contains, for example, x and y).

