Prove that

$$
\sin \alpha * \sin (60-\alpha) * \sin (60+\alpha)=\frac{1}{4} \sin (3 \alpha)
$$

Note: We will use the known formulas

$$
\begin{gathered}
\sin (60 \pm \alpha)=\sin 60 * \cos \alpha \pm \cos 60 * \sin \alpha=\frac{\sqrt{3}}{2} * \cos \alpha \pm \frac{1}{2} * \sin \alpha \\
\sin 3 \alpha=3 \sin \alpha-4 \sin ^{3} \alpha \\
\sin ^{2} \alpha+\cos ^{2} \alpha=1
\end{gathered}
$$

Solution:

$$
\begin{aligned}
\sin \alpha * \sin (60 & -\alpha) * \sin (60+\alpha)= \\
& =\sin \alpha *\left(\frac{\sqrt{3}}{2} * \cos \alpha-\frac{1}{2} * \sin \alpha\right) *\left(\frac{\sqrt{3}}{2} * \cos \alpha+\frac{1}{2} * \sin \alpha\right) \\
& =\sin \alpha *\left(\frac{3}{4} * \cos ^{2} \alpha-\frac{1}{4} * \sin ^{2} \alpha\right)=\frac{1}{4} * \sin \alpha *\left(3 \cos ^{2} \alpha-\sin ^{2} \alpha\right) \\
& =\frac{1}{4} * \sin \alpha *\left(3\left(1-\sin ^{2} \alpha\right)-\sin ^{2} \alpha\right)=\frac{1}{4} * \sin \alpha *\left(3-4 \sin ^{2} \alpha\right) \\
& =\frac{1}{4} *\left(3 \sin \alpha-4 \sin ^{3} \alpha\right)=\frac{1}{4} * \sin (3 \alpha)
\end{aligned}
$$

