Prove that the angle between internal bisector of one base angle and external bisector of other base angle of a triangle equal to one half of the vertical angle

Solution:

Draw a triangle ABC .
Let B and C are base angles and A be the vertical angle.
Draw BX internal bisector of angle B.
Draw CY external bisector of angle C.
Let BX and CY intersect at D.

Now <BDC is the angle between internal bisector of one base angle (B) and external bisector of other base angle (C) of triangle ABC .
From triangle DBC.

$$
<B D C=180-(<D B C+<D C B)
$$

Where $\angle \mathrm{DBC}$ is internally bisected angle of B and $\angle \mathrm{DCB}$ is $\angle \mathrm{C}+$ externally bisected angle of C

$$
<B D C=180-\left\lfloor<\left(\frac{B}{2}\right)+<C+\text { exterior angle of } \frac{C}{2}\right\rfloor
$$

Recall that exterior angle of C equal $(<A+<B)$
So

$$
\begin{gathered}
<B D C=180-\left\lfloor<\left(\frac{B}{2}\right)+<C+<\left(\frac{A+B}{2}\right)\right\rfloor \\
<B D C=180-\left\lfloor<B+<C+<\left(\frac{A}{2}\right)\right\rfloor \\
<B D C=\lfloor 180-(<B+<C)\rfloor-<\left(\frac{A}{2}\right) \\
<B D C=<A-<\left(\frac{A}{2}\right) \\
<B D C=<\left(\frac{A}{2}\right)
\end{gathered}
$$

