A personnel manager has found that historically the scores on aptitude tests given to applicants for entrylevel positions follow a normal distribution with a standard deviation of 32.4 points. A random sample of nine test scores from the current group of applicants had a mean score of 187.9 points.
a. Find an 80% confidence interval for the population mean score of the current group of applicants. b. Based on these sample results, a statistician found for the population mean a confidence interval extending from 165.8 to 210.0 points. Find the confidence level of this interval.
$n=9$
$a=187.9$
d=32.4
a. Find an 80% confidence interval for the population mean score of the current group of applicants.
$P(a-t<x<a+t)=0.8$
$\mathrm{P}(\mathrm{a}-\mathrm{t}<\mathrm{x}<\mathrm{a}+\mathrm{t})=\mathrm{P}(-\mathrm{t}<\mathrm{x}-\mathrm{a}<\mathrm{t})=\mathrm{P}\left(\frac{-t}{d}<\frac{x-a}{d}<\frac{t}{d}\right)=$ Central limit theorem $=$
$=\mathrm{F}\left(\frac{t}{d}\right)-\mathrm{F}\left(-\frac{t}{d}\right)=2 \mathrm{~F}\left(\frac{t}{d}\right)-1=0.8$
$\mathrm{F}\left(\frac{t}{d}\right)=0.9$
$\frac{t}{d}=1.28$ - this value is from table
$\mathrm{t}=1.28 \mathrm{~d}=41.472$
interval is (187.9-41.472, 187.9+41.472)
b. Based on these sample results, a statistician found for the population mean a confidence interval extending from 165.8 to 210.0 points. Find the confidence level of this interval.
$P(165.8<x<210.0)=u$ - confidence level
$P(-22.1<x-187.9<22.1)=u$
$\mathrm{P}\left(\frac{-22.1}{d}<\frac{x-a}{d}<\frac{22.1}{d}\right)=$ Central limit theorem $=$
$=\mathrm{F}\left(\frac{22.1}{d}\right)-\mathrm{F}\left(-\frac{22.1}{d}\right)=2 \mathrm{~F}\left(\frac{22.1}{32.4}\right)-1=\mathrm{u}$
$2 F(0.68)-1=2^{*} 0.7517-1=0.5034$
confidence level= 0.5

