Task 1. Determine if the following series converges: $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$.
Solution. Let $a_{n}$ be the $n$th term of the series, i. e. $a_{n}=\frac{(n!)^{2}}{(2 n)!}$. Use d'Alembert's ratio test. We have:

$$
\frac{a_{n+1}}{a_{n}}=\frac{((n+1)!)^{2}}{(2(n+1))!} \cdot \frac{(2 n)!}{(n!)^{2}}=\frac{(n+1)^{2}}{(2 n+1)(2 n+2)} \rightarrow \frac{1}{2 \cdot 2}=\frac{1}{4}
$$

as $n \rightarrow \infty$. Since $\frac{1}{4}<1$, we conclude that the series converges. Answer: this series converges.

