Without actual division prove that $2 x^{4}-5 x^{3}+5 x-2$ are divisible by $x^{2}-3 x+2$.
Solution: Solve the equation $x^{2}-3 x+2=0$, we have roots $x_{1}=1, x_{2}=2$.
Let $f(x)=2 x^{4}-5 x^{3}+5 x-2$, then $f\left(x_{1}\right)=f(1)=2-5+5-2=0, f\left(x_{2}\right)=f(2)=2 \cdot 16-$ $5 \cdot 8+5 \cdot 2-2=0$.

So as soon as $f\left(x_{1}\right)=0$ and $f\left(x_{2}\right)=0$ that $2 x^{4}-5 x^{3}+5 x-2$ are divisible by $x^{2}-3 x+2$.

