Assume a binomial probability distribution with $n=40$ and $\pi=.55$. Compute the following:
a. The mean and standard deviation of the random variable.
b. The probability that X is 25 or greater.
c. The probability that X is 15 or less.
d. Thr probability that X is between 15 and 25 , inclusive.
$\mathrm{Ex}=\sum_{i=0}^{40} i * C_{40}^{i} p^{i *}(1-p)^{40-i}=$
$\sum_{i=1}^{40} \frac{40!i 0.55^{i}(1-0.55)^{40-i}}{i!(40-i)!}=22$
$\mathrm{Dx}=\sum_{i=0}^{40} i^{\wedge} 2 * C_{40}^{i} p^{i *}(1-p)^{40-i}-22^{\wedge} 2=493.9-484=9.9$
standard deviation $=\mathrm{d}=\sqrt{9.9}=3.14$
b. The probability that X is 25 or greater.
$\mathrm{P}=\sum_{i=25}^{40} C_{40}^{i} p^{i *}(1-p)^{40-i}=0.214214$
c. The probability that X is 15 or less
$\mathrm{P}=\sum_{i=0}^{15} C_{40}^{i} p^{i *}(1-p)^{40-i}=0.0195775$
d. Thr probability that X is between 15 and 25 , inclusive.
$\mathrm{P}=\sum_{i=15}^{25} C_{40}^{i} p^{i *}(1-p)^{40-i}=0.858791$

