Answer on Question \#57998 -Management - Other

Harris Corp. manufactures a single product. Costs for the year 2001 for output levels of 1000 and 2000 units are as follows:

Units Produced 10002000
Direct labor \$30,000 \$30,000
Direct materials \$20,000 \$40,000
Overhead:
Variable portion $\$ 12,000 \$ 24,000$
Fixed portion $\$ 36,000 \$ 36,000$
Selling \& Administrative costs:
Variable portion $\$ 5,000 \$ 10,000$
Fixed portion \$22,000 \$22,000

At each level of output, compute the following:
A. Total manufacturing costs
B. Manufacturing costs per unit
C. If sale price is $\$ 92$, determine the break-even-point in quantity and doller values
D. Determine the contribution margin in dollar and percentage ? Please show all the answers

Solution

A.

$$
\begin{aligned}
& T C_{1000}=30,000+20,000+12,000+36,000+5,000+22,000 \\
&=\$ 125,000 \\
& T C_{2000}=30,000+40,000+24,000+36,000+10,000+22,000 \\
& \quad=\$ 162,000
\end{aligned}
$$

B.

$$
\begin{aligned}
A T C_{1000} & =\frac{\$ 125,000}{1000}=\$ 125 \\
A T C_{2000} & =\frac{\$ 162,000}{2000}=\$ 81
\end{aligned}
$$

C.

To determine the break-even-point we use the formula:

$$
Q=\frac{F C}{P-A V C}
$$

$$
\begin{aligned}
& Q_{1000}=\frac{36,000+22,000}{92-\frac{30,000+20,000+12,000+5,000}{1000}}=\frac{58,000}{92-67} \\
& =2320 \text { units or } 2320 \times \$ 92=\$ 213,440 \\
& Q_{2000}=\frac{36,000+22,000}{92-(30,000+40,000+24,000+10,000) / 2000}=\frac{58,000}{92-52} \\
& =1450 \text { units or } 1450 \times \$ 92=\$ 133,400
\end{aligned}
$$

D. The contribution margin is calculated as:

$$
\begin{gathered}
\mathrm{MR}=\mathrm{TR}-\mathrm{VC} \\
\mathrm{MR}_{1000}=\mathrm{TR}-\mathrm{VC}=92,000-67,000=\$ 25,000 \text { or } \frac{\$ 25,000}{92,000} * 100 \%=27,17 \%
\end{gathered}
$$

$\mathrm{MR}_{2000}=\mathrm{TR}-\mathrm{VC}=184,000-104,000=\$ 80,000$ or $\frac{\$ 80,000}{184,000} * 100 \%=43,48 \%$

Answer

a. \$125,000; \$162,000
b. $\mathbf{1 2 5 ;}$ \$81
c. 2320 units or $\mathbf{\$ 2 1 3 , 4 4 0 ; ~} \mathbf{1 4 5 0}$ units or $\$ \mathbf{1 3 3}, 400$
d. $\mathbf{\$ 2 5 , 0 0 0}$ or $\mathbf{2 7 , 1 7 \% ; ~ \$ 8 0 , 0 0 0 ~ o r ~ 4 3 , 4 8 \% ~}$

