Given:-
The mass of Automobile $=1500 \mathrm{Kg}$
Angle $(\theta)=90^{\circ}$
Initial velocity $(\mathrm{U})=8 \mathrm{~m} / \mathrm{s}$
Time taken $(\mathrm{t})=3 \mathrm{sec}$.
Now,
Consider the east direction as x-axis then
Initial velocity $(\underline{U})=8 \mathrm{~m} / \mathrm{s}(\mathrm{i})$ in east-direction
Final velocity $(\mathrm{v})=8 \mathrm{~m} / \mathrm{s}(\mathrm{j})$ in north- direction
A) Find the impulse delivered to thecar as a result of the turn

Impulse (1) $=$ Change in momentum
$\underline{=}=\mathrm{m}(\mathrm{v}-\mathrm{u})$
Impulse(i) $=m\left(8 \frac{m}{s} i-\frac{8 m}{s} j\right)$
The magnitude of the in impulse is $(\mathrm{I})=m \times \sqrt{8^{2}+8^{2}}$

$$
\begin{aligned}
& =1500 \times 11.313 \\
& =16970.56 \mathrm{Kg} \cdot \mathrm{~m} / \mathrm{s}(\text { North }- \text { south direction })
\end{aligned}
$$

B) Find the average force exerted on the car during the turn .

The average force (F) $=\frac{I}{t}$

$$
\begin{aligned}
& =\frac{16970.56}{3} \\
& =5656.85 \mathrm{~N}
\end{aligned}
$$

C) Find the average force exerted on the car on the road during the turn.

The average force applied by the car on the road = Force applied by the road on the car So, Average force $=5656.85 \mathrm{~N}$.

