Answer on Question \#83797 - Engineering | Mechanical Engineering

Four kg of water is placed in an enclosed volume of $1 \mathrm{~m}^{3}$. Heat is added until the temperature is $150^{\circ} \mathrm{C}$. Find (a) the pressure, (b)the mass of vapor, and (c) the volume of the vapor.

Answer:

NOTE: Steam table is available at:

https://www.nist.gov/sites/default/files/documents/srd/NISTIR5078-Tab1.pdf

The density of the saturated steam at $150^{\circ} \mathrm{C}$ is $\rho_{V}=2.5481 \mathrm{~kg} / \mathrm{m}^{3}$. Thus, 4 kg of the saturated steam at $150^{\circ} \mathrm{C}$ occupies volume of

$$
\frac{4 \mathrm{~kg}}{2.5481 \mathrm{~kg} / \mathrm{m}^{3}}=1.57 \mathrm{~m}^{3}
$$

which is more than $1 \mathrm{~m}^{3}$. It shows that, the final state is the saturated water-steam mixture.
The pressure is equal to the saturation pressure 4.7616 bar.
The density of the saturated water $\rho_{L}=917.01 \mathrm{~kg} / \mathrm{m}^{3}$. Noting the mass of the water and steam in the mixture by m_{L} and m_{ν}, respectively, we can define the total mass M and volume V of the mixture by following equations

$$
\begin{aligned}
M & =m_{L}+m_{V} \\
V & =\frac{m_{L}}{\rho_{L}}+\frac{m_{V}}{\rho_{V}} .
\end{aligned}
$$

Considering these equations together, yields

$$
\begin{gathered}
m_{L}=M-m_{V}, \\
V=\frac{M-m_{V}}{\rho_{L}}+\frac{m_{V}}{\rho_{V}} \\
m_{V}=\frac{V \rho_{L}-M}{\frac{\rho_{L}}{\rho_{V}}-1} .
\end{gathered}
$$

Substitute to define the mass of the steam

$$
m_{V}=\frac{1 \cdot 917.01-4}{\frac{917.01}{2.5481}-1}=2.544 \mathrm{~kg} .
$$

The volume V_{v} of the steam equals to

$$
V_{V}=\frac{m_{V}}{\rho_{V}}=\frac{2.544}{2.5481}=0.998 \mathrm{~m}^{3} .
$$

Answer provided by www.AssignmentExpert.com

