

Answer on Question #81370 - Engineering - Electrical Engineering

A small motor rated at 50 Va, 120 V and with a power factor of 0.65 lagging.

- a) Determine the current of the motor.
- b) What is the capacitance of the capacitor to be connected across the motor to make the power factor 0.94?
- c) What will be the line current upon the addition of the capacitor?

Solution

- a) The current is:

$$I = \frac{S}{V} = \frac{50}{120} = 0.42 \text{ A.}$$

- b) With old power factor:

$$P = S \cos \varphi = 50 \cdot 0.65 = 32.5 \text{ W}$$

With new power factor:

$$S_n = \frac{P}{0.94} = 34.57 \text{ V} \cdot \text{A.}$$

A capacitor affects reactive (and complex) power and does not affect active power, so:

$$S_n^2 = P^2 + Q^2 \Rightarrow Q = \sqrt{S_n^2 - P^2} = \sqrt{34.57^2 - 32.5^2} = 11.78 \text{ Var.}$$

$$Q = 2\pi f C V^2 \Rightarrow C = \frac{Q}{2\pi f V^2} = \frac{11.78}{2\pi 50 \cdot 120^2} = 2.6 \mu\text{F.}$$

- c) The new current will be

$$I_n = \frac{S_n}{V} = \frac{34.57}{120} = 0.29 \text{ A,}$$

or 30.1% less than the old current.

Answer

- a) 0.42 A; b) 2.6 μF ; c) 0.29 A