Question \#81307

Find the angle of inclination with respect to vertical of a two wheeler negotiating a turn. Combined mass of the vehicle with its rider is 250 kg .

Moment of inertia of the engine flywheel $-0.3 \mathrm{~kg} \mathrm{~m}^{2}$
Moment of inertia of each road wheel $-1 \mathrm{~kg} \mathrm{~m}^{2}$
Speed of the flywheel is 5 times the speed of the road wheel and in the same direction. Height of the centre of gravity of the rider with vehicle is 0.6 m . Speed of the two wheeler is 90 KMPH . Wheel radius is 300 mm . Radius of turn is 50 meters.

Answer:

The gyroscopic couple is given by:

$$
C_{1}=\frac{v^{2}}{R r}\left(2 I_{w}+G I_{e}\right) \cos \theta
$$

where $v=90 \mathrm{~km} / \mathrm{hr}=25 \mathrm{~m} / \mathrm{s}, R=50 \mathrm{~m}, r=300 \mathrm{~mm}=0.3 \mathrm{~m}, I_{w}=1 \mathrm{~kg} . \mathrm{m}^{2}, l_{e}=0.3 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, $G=5$ - the gear ratio (the ratio of the engine flywheel speed to road wheel speed),
θ - the angle of inclination with respect to vertical of the two wheeler.
The centrifugal couple is given by:

$$
C_{2}=\frac{m v^{2}}{R} \times h \cos \theta
$$

where $m=250 \mathrm{~kg}, h=0.6 \mathrm{~m}$. Substitute:

$$
\begin{gathered}
C_{1}=\frac{25^{2}}{50 \cdot 0.3}(2 \cdot 1+5 \cdot 0.3) \cos \theta=145.8 \cos \theta \\
C_{2}=\frac{250 \cdot 25^{2}}{50} \times 0.6 \cos \theta=1875 \cos \theta
\end{gathered}
$$

Thus, the total overturning couple is

$$
C_{O}=C_{1}+C_{2}=145.8 \cos \theta+1875 \cos \theta=2020.8 \cos \theta
$$

The balancing couple is given by:

$$
C_{B}=m g h \sin \theta=250 \cdot 9.81 \cdot 0.6 \sin \theta=1471.5 \sin \theta
$$

For the equilibrium conditions, the overturning couple is equal to the balancing couple. Thus:

$$
\begin{gathered}
C_{O}=C_{B} \\
2020.8 \cos \theta=1471.5 \sin \theta \\
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{2020.8}{1471.5}=1.373 \rightarrow \theta=53.9^{\circ} .
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

