

## Question # 76357

Lubricating oil enters the tubes of a heat exchanger at 74C and leaves at 34C. The diameter of the tube is 50 mm and the oil flow through the tube at 2.5 m/s.

Input power to the system is 30 kW.

The specific heat capacity of the oil is 2.28 kJ/kgK and the density is 900 kg/m<sup>3</sup>. Determine:

- The mass flow rate of the oil.
- The thermal efficiency of this heat transfer process.

### Answer:

The correlation between mass flowrate  $m$  and fluid velocity  $u$  is given by:

$$m = u\rho A, \quad (1)$$

where  $\rho$  – fluid density,

$$A = \frac{\pi d^2}{4} \text{ – cross sectional inside tube area,}$$

$d$  – inside diameter of the tube.

Substituting into (1) gives:

$$m = 2.5 \cdot 900 \cdot \frac{3.14 \cdot 0.05^2}{4} = 4.42 \text{ m/s.}$$

The heat rate  $Q$  transferred from the oil is given by:

$$Q = mc_p(t_{in} - t_{out}), \quad (2)$$

where  $c_p$  – specific heat capacity of the oil,

$t_{in}$  and  $t_{out}$  – respectively inlet and outlet temperature of the oil.

Substituting into (2) gives:

$$Q = 4.42 \cdot 2.28(74 - 34) = 403 \text{ kW,}$$

The thermal efficiency is determined by ratio between useful power and available heat rate:

$$\eta = \frac{P}{Q}, \quad (3)$$

where  $P$  – the input power to the system.

Thus:

$$\eta = \frac{30}{403} = 0.074 = 7.4\%.$$