Answer on Question \#59710-Engineering-Material Science Engineering

a) A single cylinder petrol engine has a volume compression ratio of 8:1, takes in a mixture of fuel and air at a temperature of $250^{\circ} \mathrm{C}$ and its pressure is 101 kPa . If the pressure at the end of the compression stroke is 1.5 MPa what will be its final temperature?

Solution

$$
\begin{gathered}
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
T_{2}=T_{1} \frac{p_{2}}{p_{1}} \frac{V_{2}}{V_{1}}=(250+273.15) \frac{1.5 \cdot 10^{6}}{101 \cdot 10^{3}} \frac{1}{8}=971.19 \mathrm{~K}=(250-273.15)^{\circ} \mathrm{C}=698^{\circ} \mathrm{C}
\end{gathered}
$$

b) A compressed air storage cylinder has a volume of 0.5 m 3 and contains air at an absolute pressure of 1.8 MPa and temperature $20^{\circ} \mathrm{C}$. A quantity of the air is released during which the temperature of the remaining air falls to $15^{\circ} \mathrm{C}$ and the pressure to 1.5 MPa . Calculate the mass of the air released. The characteristic gas constant for air is $287 \mathrm{Jkg}-1 \mathrm{~K}-1$.

Solution

$$
p V=n R T
$$

I'll eventually use the molecular weight of air ($28.7 \mathrm{~g} / \mathrm{mol}$); this will provide essentially the same info as the "characteristic gas constant".

In the initial state,

$$
\left(1.8 \cdot 10^{6} \mathrm{~Pa}\right)\left(0.5 \mathrm{~m}^{3}\right)=n_{1}\left(8.314 \frac{\mathrm{~J}}{(\mathrm{~mol} \mathrm{~K})}\right)(293.15 \mathrm{~K})
$$

In the final state,

$$
\begin{gathered}
\left(1.5 \cdot 10^{6} \mathrm{~Pa}\right)\left(0.5 \mathrm{~m}^{3}\right)=n_{2}\left(8.314 \frac{\mathrm{~J}}{(\mathrm{~mol} \mathrm{~K})}\right)(288.15 \mathrm{~K}) \\
n_{1}-n_{2}=\left[\frac{0.5 \mathrm{~m}^{3}}{\left(8.314 \frac{\mathrm{~J}}{(\mathrm{~mol} \mathrm{~K})}\right)}\right]\left(\frac{1.8 \cdot 10^{6} \mathrm{~Pa}}{293.15} \mathrm{~K}-\frac{1.5 \cdot 10^{6} \mathrm{~Pa}}{288.15} \mathrm{~K}\right)=56.2 \mathrm{moles} \\
m=M n=56.2 \mathrm{~mol}\left(28.7 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=1.61 \mathrm{~kg}
\end{gathered}
$$

