

Answer on Question #54205-Engineering-Mechanical Engineering

A goods train's diesel develops $P = 1500\text{ kW}$ at the driving wheels when the train is travelling at $v = 80 \frac{\text{km}}{\text{h}}$. The driving wheels have a diameter of $d = 2r = 1.1\text{ m}$. Assuming there is no slip between wheels and rail calculate the torque at the wheels and the work done by the wheels in $l = 1 \text{ kilometre}$?

A. 422Nm, 987.9kJ B. 808Nm, 288MJ C. 1728Nm, 76.5kJ

D. 37125Nm, 6.75MJ E. 9842 Nm, 153MJ

Solution

The torque at the wheels is

$$T = Fr = \frac{P}{v}r = \frac{1500 \cdot 10^3 W \cdot 0.55m}{80 \frac{1000m}{3600s}} = 37125\text{ Nm}.$$

The work done by the wheels in 1 kilometre is

$$W = Fl = \frac{P}{v}l = \frac{1500 \cdot 10^3 W \cdot 10^3 m}{80 \frac{1000m}{3600s}} = 6.75\text{ MJ}.$$

Answer: D. 37125Nm, 6.75MJ.