

Answer on Question #52016-Engineering-Other

A piece of material ($\nu = 0.3$ and $E = 5\text{GPa}$) shaped like a cigarette packet ($1\text{cm} \times 3\text{cm} \times 5\text{cm}$) is subjected to a pressure of $\sigma = 200 \frac{\text{MN}}{\text{m}^2}$. Calculate the new volume?

Solution

Let $\sigma = \sigma_x = \sigma_y = \sigma_z$, because we don't know the direction of the pressure. Then

$$\varepsilon = \varepsilon_x = \varepsilon_y = \varepsilon_z = \frac{1}{E}(\sigma(1 + \nu) - \nu(\sigma + \sigma + \sigma)) = \frac{\sigma(1 - 2\nu)}{E} = \frac{200 \frac{\text{MN}}{\text{m}^2} (1 - 2 \cdot 0.3)}{5\text{GPa}} = 0.08.$$

Thus, the new volume is

$$V' = (1 + \varepsilon)^3 V = (1 + 0.08)^3 \cdot 1 \cdot 3 \cdot 5 \text{ cm}^3 = 18.9 \text{ cm}^3.$$

Answer: 18.9 cm^3 .