

Answer on Question #49389, Engineering, Other

Task:

A pendulum has max displacement of $A=2.5\text{m}$ and frequency= 6Hz . Displacement at time x is $x=A\sin(\omega t)$. where A is max displacement and ω is angular velocity $2\pi f$. Find time when displacement is 90cm .

Using a Power series expansion of above equation verify a time of 0.0416seconds for displacement to reach 250cm

Answer:

$A=2.5\text{m}$; $f=6\text{Hz}$; $x_1=90\text{cm}$;

$t_2=0.0416$; $x_2=250\text{cm}$

$$x=A\sin(\omega t)=A\sin(2\pi ft)$$

$$\text{thus time when displacement is } 90\text{cm} : t_1 = \frac{1}{2\pi f} \arcsin \frac{x_1}{A} = \frac{1}{2\pi \cdot 6} \arcsin \frac{0.9}{2.5} \approx 0.00977\text{s}$$

$$\text{Using a Power series expansion of above equation: } \sin \omega t = \omega t - \frac{(\omega t)^3}{6} + O[t]^5$$

$$x_0 = A \sin \omega t_2 = A \left[\omega t_2 - \frac{(\omega t_2)^3}{6} \right] = A \left[2\pi f t_2 - \frac{(2\pi f t_2)^3}{6} \right] = 2.5 \left[6.28 \cdot 6 \cdot 0.0416 - \frac{(6.28 \cdot 6 \cdot 0.0416)^3}{6} \right] = 1.643\text{m}$$

So $x_0 \neq x_2$ and t_2 is incorrect.