

Answer on Question #46086, Physics-Mechanics-Kinematics-Dynamics

If the force field defined by vector $\vec{F} = (3x^2yz - 3y)\vec{i} + (x^3z - 3x)\vec{j} + (x^3y + 2z)\vec{k}$ conservative? if so, find the scalar potential associated with the vector F .

Solution

$$\vec{F} = (3x^2yz - 3y)\vec{i} + (x^3z - 3x)\vec{j} + (x^3y + 2z)\vec{k} = M(x, y, z)\vec{i} + N(x, y, z)\vec{j} + P(x, y, z)\vec{k}$$

Then, \vec{F} is conservative if and only if

$$\frac{\partial P}{\partial x} = \frac{\partial M}{\partial z}, \frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}, \frac{\partial P}{\partial y} = \frac{\partial N}{\partial z}.$$

$$\frac{\partial P}{\partial x} = \frac{\partial}{\partial x}(x^3y + 2z) = 3x^2y.$$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(x^3y + 2z) = x^3.$$

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(3x^2yz - 3y) = 3x^2z - 3.$$

$$\frac{\partial M}{\partial z} = \frac{\partial}{\partial z}(3x^2yz - 3y) = 3x^2y.$$

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x^3z - 3x) = 3x^2z - 3.$$

$$\frac{\partial N}{\partial z} = \frac{\partial}{\partial z}(x^3z - 3x) = x^3.$$

So $\frac{\partial P}{\partial x} = \frac{\partial M}{\partial z} = 3x^2y$, $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y} = 3x^2z - 3$, $\frac{\partial P}{\partial y} = \frac{\partial N}{\partial z} = x^3$ and the force field \vec{F} is conservative.

Let's find the scalar potential f associated with the vector \vec{F}

$$\frac{\partial f}{\partial x} = M = (3x^2yz - 3y),$$

$$\frac{\partial f}{\partial y} = N = (x^3z - 3x),$$

$$\frac{\partial f}{\partial z} = P = (x^3y + 2z).$$

If we integrate the first of the three equations with respect to x , we find that

$$f(x, y, z) = \int (3x^2yz - 3y)dx = x^3yz - 3yx + g(y, z).$$

where $g(y, z)$ is a constant dependent on y and z variables. We then calculate the partial derivate with respect to y from this equation and match it with the equation of above.

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^3yz - 3yx + g(y, z)) = x^3z - 3x + \frac{\partial g}{\partial y} = (x^3z - 3x).$$

This means that the partial derivative of g with respect to y is 0, thus eliminating y from g entirely and leaving g as a function of z alone.

$$f(x, y, z) = x^3yz - 3yx + h(z).$$

We then repeat the process with the partial derivative with respect to z

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} (x^3yz - 3yx + h(z)) = x^3y + \frac{dh}{dz} = (x^3y + 2z)$$

which means that

$$\frac{dh}{dz} = (2z)$$

so we can find $h(z)$ by integrating:

$$h(z) = z^2 + c.$$

Therefore,

$$f(x, y, z) = x^3yz - 3yx + z^2 + c.$$