Answer on Question \#48063-Engineering-SolidWorks-CosmoWorks-Ansys

Figure shows a block of mass m resting on a 20° slope. The block has coefficients of friction $\mu_{\mathrm{s}}=0.81$ and $\mu_{k}=0.45$ with the surface. It is connected via a massless string over a massless, frictionless pulley to a hanging block of mass $m_{2}=2.0 \mathrm{~kg}$.

If this minimum mass is nudged ever so slightly, it will start being pulled up the incline. What acceleration will it have?

Solution

On a 20° slope, the force parallel causes acceleration down the incline

$$
F_{p}=m \cdot g \cdot \sin \theta=m \cdot 9.8 \cdot \sin 20^{\circ}
$$

The friction force is caused by the force perpendicular $m \cdot g \cdot \cos \theta$ is

$$
F_{f r}=\mu_{s} m \cdot g \cdot \cos \theta=0.81 \cdot m \cdot 9.8 \cdot \cos 20^{\circ}
$$

Since you are trying to move the block up the slope, both of these forces are opposing motion:

$$
F_{p}+F_{f r}=m \cdot 9.8 \cdot \sin 20^{\circ}+0.81 \cdot m \cdot 9.8 \cdot \cos 20^{\circ}=m \cdot 9.8\left(\sin 20^{\circ}+0.81 \cdot \cos 20^{\circ}\right)
$$

The force caused by the 2 kg is $F=2 \cdot 9.8=19.6 \mathrm{~N}$ pulling the block up the slope.
The block will stick and not slip, if the sum of the down forces is less than 19.6 N .

$$
\begin{aligned}
& m \cdot 9.8\left(\sin 20^{\circ}+0.81 \cdot \cos 20^{\circ}\right)<19.6 \\
& \mathrm{~m}<\frac{19.6}{9.8\left(\sin 20^{\circ}+0.81 \cdot \cos 20^{\circ}\right)} \\
& \mathrm{m}<1.81 \mathrm{~kg}
\end{aligned}
$$

If this minimum mass is nudged ever so slightly, it will start being pulled up the incline. What acceleration will it have?

We need this kinetic friction force:

$$
F_{k}=\frac{\mu_{k}}{\mu_{s}} F_{f r}=\frac{\mu_{k}}{\mu_{s}} \mu_{s} m \cdot g \cdot \cos \theta=\mu_{k} m \cdot g \cdot \cos \theta=0.45 \cdot 1.81 \cdot 9.8 \cdot \cos 20^{\circ}
$$

So,

$$
\begin{gathered}
19.6-1.81 \cdot 9.8\left(\sin 20^{\circ}+0.45 \cdot \cos 20^{\circ}\right)=1.81 \cdot a . \\
a=3.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
\end{gathered}
$$

Answer: $3.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

