

Answer on Question #47831 – Engineering – Other

1. An aeroplane is flying at 100 m/s, it dives along a vertical circle of radius 200m. Mass of pilot is 75 kg. What force is on pilot by seat of plane when it is at maximum and minimum height?

$$v = 200 \text{ m/s}$$

$$r = 200 \text{ m}$$

$$m = 75 \text{ kg}$$

$$F_1, F_2 - ?$$

Solution.

The acceleration of the plane is centripetal: $a = \frac{v^2}{r}$.

When the plane is at maximum height, the acceleration is directed downwards, so the weight of the pilot is $P = m(g - a)$. When the plane is at minimum height, the acceleration is directed upwards, so the weight of the pilot is $P = m(g + a)$.

The force acting upon the pilot equals to pilot's weight, but the direction of it is opposite. Thus,

$$F_1 = m \left(g - \frac{v^2}{r} \right), \quad F_2 = m \left(g + \frac{v^2}{r} \right).$$

$$\text{Let check the dimension: } [F_1] = [F_2] = \text{kg} \cdot \left(\frac{\text{m}}{\text{s}^2} + \frac{(\text{m/s})^2}{\text{m}} \right) = \frac{\text{kg} \cdot \text{m}}{\text{s}^2} = \text{N}.$$

$$\text{Let evaluate the quantities: } F_1 = 75 \cdot \left(9.81 - \frac{100^2}{200} \right) = -3010 \text{ (N)},$$

$$F_2 = 75 \cdot \left(9.81 + \frac{100^2}{200} \right) = 4490 \text{ (N)}.$$

Answer: -3010 N , 4490 N .