Answer on Question \#47831 - Engineering - Other

1. An aeroplane is flying at $100 \mathrm{~m} / \mathrm{s}$, it dives along a vertical circle of radius 200 m . Mass of pilot is 75 kg . What force is on pilot by seat of plane when it is at maximum and minimum height?
$v=200 \mathrm{~m} / \mathrm{s}$
$r=200 m$

$m=75 \mathrm{~kg}$
$F_{1}, F_{2}-?$

Solution.

The acceleration of the plane is centripetal: $a=\frac{v^{2}}{r}$.
When the plane is at maximum height, the acceleration is directed downwards, so the weight of the pilot is $P=m(g-a)$. When the plane is at minimum height, the acceleration is directed upwards, so the weight of the pilot is $P=m(g+a)$.
The force acting upon the pilot equals to pilot's weight, but the direction of it is opposite. Thus,

$$
F_{1}=m\left(g-\frac{v^{2}}{r}\right),
$$

$$
F_{2}=m\left(g+\frac{v^{2}}{r}\right) .
$$

Let check the dimension: $\left[F_{1}\right]=\left[F_{2}\right]=k g \cdot\left(\frac{\mathrm{~m}}{\mathrm{~s}^{2}}+\frac{(\mathrm{m} / \mathrm{s})^{2}}{\mathrm{~m}}\right)=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}=\mathrm{N}$.
Let evaluate the quantities: $\quad F_{1}=75 \cdot\left(9.81-\frac{100^{2}}{200}\right)=-3010(\mathrm{~N})$, $F_{2}=75 \cdot\left(9.81+\frac{100^{2}}{200}\right)=4490(\mathrm{~N})$.

Answer: $-3010 N$, $4490 N$.

