Answer on Question \#47769, Engineering, Other

Newton's rings are observed with two different media between the glass surfaces. The nth rings have diameters as 10:7; Find the ratio of the refractive indices of the two media

Solution:

Newton's rings is a phenomenon in which an interference pattern is created by the reflection of light between two surfaces - a spherical surface and an adjacent flat surface.

For a dark ring viewed by reflection:

$$
n \lambda=\frac{\mu r_{n}^{2}}{R}
$$

where $n=0,1,2,3$, etc, r_{n} is the radius of the nth ring and μ is refractive index. Thus,

$$
r_{n}=\frac{\overline{n \lambda R}}{\mu}
$$

In our case,

$$
\frac{r_{n 1}}{r_{n 2}}=\frac{\overline{\mu_{2}}}{\mu_{1}}=\frac{10}{7}
$$

Thus,

$$
\begin{gathered}
\frac{\mu_{2}}{\mu_{1}}=\frac{100}{49} \\
\frac{\mu_{1}}{\mu_{2}}=\frac{49}{100}=0.49
\end{gathered}
$$

Answer: $\frac{\mu_{1}}{\mu_{2}}=\frac{49}{100}=0.49$

