Answer on Question \#46091-Engineering-Other

Let

$$
A=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)
$$

a) Find the adjoint of A. Find the inverse of A from the adjoint of A. (4)
b) Find the characteristic and minimal polynomials of A. Hence find its eigenvalues and eigenvectors. (6)
c) Why is A diagonalisable? Find a matrix P such that P1AP is diagonal. (2)
d) Verify Cayley-Hamilton theorem for A. Hence, find the inverse of A

Solution

a) Find the adjoint of A.

First find the cofactor of each element.

$$
\begin{aligned}
& A_{11}=\left|\begin{array}{cc}
7 & -6 \\
12 & -11
\end{array}\right|=-5, A_{12}=-\left|\begin{array}{cc}
6 & -6 \\
12 & -11
\end{array}\right|=-6, A_{13}=\left|\begin{array}{cc}
6 & 7 \\
12 & 12
\end{array}\right|=-12, A_{21}= \\
& -\left|\begin{array}{cc}
4 & -4 \\
12 & -11
\end{array}\right|=-4, A_{22}=\left|\begin{array}{cc}
5 & -4 \\
12 & -11
\end{array}\right|=-7, A_{23}=-\left|\begin{array}{cc}
5 & 4 \\
12 & 12
\end{array}\right|=-12, A_{31}=\left|\begin{array}{ll}
4 & -4 \\
7 & -6
\end{array}\right|= \\
& 4, A_{32}=-\left|\begin{array}{ll}
5 & -4 \\
6 & -6
\end{array}\right|=6, A_{33}=\left|\begin{array}{cc}
5 & 4 \\
6 & 7
\end{array}\right|=11 .
\end{aligned}
$$

As a result the cofactor matrix of A is

$$
\left(\begin{array}{ccc}
-5 & -6 & -12 \\
-4 & -7 & -12 \\
4 & 6 & 11
\end{array}\right)
$$

Finally the adjoint of A is the transpose of the cofactor matrix:

$$
\left(\begin{array}{ccc}
-5 & -4 & 4 \\
-6 & -7 & 6 \\
-12 & -12 & 11
\end{array}\right)
$$

Find the inverse of A from the adjoint of A.

$$
\begin{gathered}
\operatorname{det} A=a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}=-1 . \\
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{ccc}
-5 & -4 & 4 \\
-6 & -7 & 6 \\
-12 & -12 & 11
\end{array}\right)=\frac{1}{-1}\left(\begin{array}{ccc}
-5 & -4 & 4 \\
-6 & -7 & 6 \\
-12 & -12 & 11
\end{array}\right)=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right) .
\end{gathered}
$$

b) The characteristic equation for Q is $\lambda^{3}-D_{1} \lambda^{2}+D_{2} \lambda-D_{3}=0$.

$$
\begin{gathered}
D_{1}=5+7-11=1 \\
D_{2}=A_{11}+A_{22}+A_{33}=-5-7+11=-1 \\
D_{3}=|A|=-1
\end{gathered}
$$

Hence

$$
\lambda^{3}-\lambda^{2}-\lambda+1=0 \rightarrow(\lambda-1)^{2}(\lambda+1)=0
$$

The minimal polynomials of A are

$$
(\lambda-1),(\lambda-1)(\lambda+1),(\lambda+1),(\lambda-1)^{2}
$$

The eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=+1$.
Find eigenvector corresponding $\lambda_{1}=-1$

$$
\left(\begin{array}{ccc}
5+1 & 4 & -4 \\
6 & 7+1 & -6 \\
12 & 12 & -11+1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \rightarrow v_{1}=\frac{1}{7}\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right)
$$

Find eigenvectors corresponding $\lambda_{2}=1$

$$
\left(\begin{array}{ccc}
5-1 & 4 & -4 \\
6 & 7-1 & -6 \\
12 & 12 & -11-1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \rightarrow x+y-z=0 \rightarrow v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), v_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

c) Because A have eigenvector basis.

Find a matrix P such that $P^{-1} A P$ is diagonal.

$$
\begin{gathered}
\mathrm{P}=\left(\begin{array}{ccc}
\frac{2}{7} & \frac{1}{\sqrt{2}} & 0 \\
\frac{3}{7} & 0 & \frac{1}{\sqrt{2}} \\
\frac{6}{7} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
P^{-1} A P=D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

d) Verify Cayley-Hamilton theorem for A. Hence, find the inverse of A. We have to show that

$$
\begin{gathered}
A^{3}-A^{2}-A+I=0 \\
A^{2}=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
A^{3}=A^{2} A=I A=A
\end{gathered}
$$

So

$$
A-I-A+I=0
$$

This verifies Cayley-Hamilton theorem.
The inverse of A :

$$
A^{2}=A A=1 \rightarrow A^{-1}=A=\left(\begin{array}{ccc}
5 & 4 & -4 \\
6 & 7 & -6 \\
12 & 12 & -11
\end{array}\right)
$$

