Answer on Question \#45759, Engineering, Other

Task:

a) Which of the following functions are 1-1 and which are onto? Justify your answer.
i) $f: R \rightarrow R_{0}$ given by $f(x)=x^{2}$ where R^{0} is the set $f x 2 R j x 0 g$.
ii) $f: R \rightarrow R$ given by $f(x)=x^{2}+x+1$.
b) Let $\mathrm{a}=\left(1+2 \mathrm{p}^{2} ; \mathrm{p}^{3}+2 \mathrm{p}^{2} ; 1+\mathrm{p}^{2}\right)$
and $b=\left(1+p^{2} ; 0 ; 1+p^{2}\right)$.
i) Find the direct cosines of a and b.
ii) Find the angle between a and b.
c) Check that the vectors $\bar{u}=(35 ; 45 ; 0) \bar{v}=(45 ; 35 ; 0)$
and $\bar{w}=(0 ; 0 ; 1)$ are orthonormal. Further, write the vector $a=(1 ; 1 ; 2)$ as a linear combination of the vectors.

Solution:

a)

The function is injective or 1 to 1 if every element of the function's codomain is the image of at most one element of its domain.
The function from a set X to a set Y is surjective (or onto), or a surjection, if every element y in Y has a corresponding element x in X such that $f(x)=y$.
i) $f: R \rightarrow R_{0}$ given by $f(x)=x^{2}$
if $R_{0}=R \backslash\{0\}$ then f is not onto because for $y=-2$ we can't find a x such that $f(x)=x^{2}$ and it is not 1 to 1 , because $f(1)=f(-1)=1$. If $R_{0}=[0 ;+\infty]$ then f is onto, because for every y in $[0 ;+\infty)$ exists $x=$
\sqrt{y} such that $y=f(x)$ and it is not 1 to 1 , because $f(-1)=f(1)$.
ii) $f: R \rightarrow R$ given by $f(x)=x^{2}+x+1$.

This function is not onto, because for $y=0$ we can't find x such that $0=x^{2}+x+1$. And it is not 1 to 1 because $f(1)=f(-2)=3$.

b) Let $a=(1+2 p 2 ; p 3+2 p 2 ; 1+p 2)$

and $b=(1+p 2 ; 0 ; 1+p 2)$.
i) Find the direct cosines of a and b.
ii) Find the angle between a and b.

$$
\begin{aligned}
& \cos \angle(\bar{a}, \bar{b})=\frac{\bar{a} \cdot \bar{b}}{|\bar{a}| \cdot|\bar{b}|}=\frac{\left(1+p^{2}\right)\left(1+2 p^{2}\right)+0\left(p^{3}+2 p^{2}\right)+\left(1+p^{2}\right)^{2}}{\sqrt{\left(1+p^{2}\right)^{2}+\left(1+p^{2}\right)^{2}} \sqrt{\left(1+2 p^{2}\right)^{2}+\left(p^{3}+2 p^{2}\right)^{2}+\left(1+p^{2}\right)^{2}}}= \\
& =\frac{3 p^{4}+5 p^{2}+2}{\left(1+p^{2}\right) \sqrt{2} \sqrt{p^{6}+4 p^{5}+9 p^{4}+6 p^{2}+2}} \Rightarrow \\
& \angle(\bar{a}, \bar{b})=\arccos \left(\frac{3 p^{4}+5 p^{2}+2}{\left(1+p^{2}\right) \sqrt{2} \sqrt{p^{6}+4 p^{5}+9 p^{4}+6 p^{2}+2}}\right)
\end{aligned}
$$

c) Check that the vectors $\bar{u}=(35 ; 45 ; 0) \bar{v}=(45 ; 35 ; 0)$
and $\bar{w}=(0 ; 0 ; 1)$ are orthonormal. Further, write the vector $a=(1 ; 1 ; 2)$ as a linear combination of the vectors.
$\bar{u}=(35 ; 45 ; 0) \bar{v}=(45 ; 35 ; 0)$ and $\bar{w}=(0 ; 0 ; 1)$ are orthonormal if $\bar{u} \cdot \bar{v} \cdot \bar{w}=0$ so $\bar{u} \cdot \bar{v} \cdot \bar{w}=35 * 45 * 0+45 * 35 * 0+0 * 0 * 1=0$ they are orthonormal.

Further, write the vector $a=(1 ; 1 ; 2)$ as a linear combination of the vectors
$\bar{u}=(35 ; 45 ; 0) \bar{v}=(45 ; 35 ; 0)$ and $\bar{w}=(0 ; 0 ; 1)$
$\bar{a}=x \bar{u}+y \bar{v}+z \bar{w}$
$(1 ; 1 ; 2)=x(35 ; 45 ; 0)+y(45 ; 35 ; 0)+z(0 ; 0 ; 1)$
$(1 ; 1 ; 2)=(35 x+45 y ; 45 x+35 y ; z)$
$\left\{\begin{array}{l}35 x+45 y=1 \\ 45 x+35 y=1 \\ z=2\end{array}\right.$
$\left\{\begin{array}{l}x=\frac{1}{80} \\ y=\frac{1}{80} \\ z=2\end{array}\right.$
So linear combination of the vectors is $(1 / 80 ; 1 / 80 ; 2)$

