Answer on Question \#45755 - Engineering - Other

Obtain the solution set of the system $x-3 y+4 z=9,4 x+3 y+2 z=7, y-2 x=5-10 z$ by elimination.

Solution:

The elimination method can be used to solve a system of linear equations. By adding or subtracting the three linear equations in a way that eliminates one of the variables, a single variable equation is left

$$
\begin{align*}
& \left\{\begin{array}{l}
x-3 y+4 z=9 \\
4 x+3 y+2 z=7 \\
y-2 x=5-10 z
\end{array}\right. \\
& \text { (1) }+(2): \\
& x-3 y+4 z+(4 x+3 y+2 z)=9+7 \\
& 5 \mathrm{x}+6 \mathrm{z}=16 \\
& z=\frac{16-5 x}{6} \\
& \text { (2) } \times-2 \text { : } \\
& \left\{\begin{array}{l}
x-3 y+4 z=9 \\
-8 x-6 y-4 z=-14 \\
y-2 x+10 z=5
\end{array}\right. \\
& \text { (2) }+(1): \\
& x-3 y+4 z+(-8 x-6 y-4 z)=9-14 \\
& -7 x-9 y=-5 \\
& y=\frac{5-7 x}{9} \tag{5}\\
& \text { (5) and(4)in(3): } \\
& \frac{5-7 x}{9}-2 x=5-10 \cdot \frac{16-5 x}{6} \\
& 4(5-7 x)-72 x=180-60(16-5 x) \\
& 800-400 x=0 \\
& \mathrm{x}=2 \\
& \mathrm{y}=\frac{5-7 \mathrm{x}}{9}=\frac{5-7 \cdot 2}{9}=-1 \\
& z=\frac{16-5 x}{6}=\frac{16-5 \cdot 2}{6}=1
\end{align*}
$$

Answer: $\mathrm{x}=2 ; \mathrm{y}=-1 ; \mathrm{z}=1$;

