Problem.

If A and B are mutually exclusive and $P(A)=0.29, P(B)=0.43$. Find
a) , b) P , c) P

Remark.

The part of the question is missed. I suppose that this is question from Super Course in Mathematics for the IIT-JEE: Algebra II. The full statement is:
"If A and B are mutually exclusive and $\mathrm{P}(A)=0.29, \mathrm{P}(B)=0.43$. Find
a) $P\left(A^{\prime}\right)$, b) $P(A \cup B)$, c) $P\left(A \cap B^{\prime}\right)$, d) $P\left(A^{\prime} \cap B^{\prime}\right)$."

Solution.

Since A and B are mutually exclusive events $A \cap B=\emptyset$ and $P(A \cap B)=0$.
a) $P\left(A^{\prime}\right)=1-P(A)=0.71$;
b) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)=0.72$.
c) $P\left(A \cap B^{\prime}\right)=P(A)=0.29$, as A is subset of B^{\prime} (A and B are mutually exclusive).
d) $P\left(A^{\prime} \cap B^{\prime}\right)=P\left((A \cup B)^{\prime}=1-P(A \cup B)=0.28\right.$, by De Morgan's law.

Answer: a) $P\left(A^{\prime}\right)=0.71$; b) $P(A \cup B)=0.72$; c) $P\left(A \cap B^{\prime}\right)=0.29$; d) $P\left(A^{\prime} \cap B^{\prime}\right)=0.28$.

