Answer on Question \#45530, Engineering, SolidWorks

A company manufactures 4000 cars in a year with a probability that a part will be defective is 0.002 . Find the probability that company produces a) 4 cars with defective b) at least 4 cars c) at most 4 cars with defective.

Solution

Here we are dealing with binomial distribution and hence we will use formula for probability mass function:

$$
f(k ; n, p)=\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where $\mathrm{n}=4000$ is number of randomly selected cars, $\mathrm{k}=4$ is number of defective cars and $\mathrm{p}=0.002$ is probability. a) So, the probability to find 4 defective cars among 4000 is

$$
\operatorname{Pr}(X=4)=\binom{4000}{4} \cdot 0.002^{4} \cdot(1-0.002)^{3} 996=0.0571663
$$

c) Here we have to add probabilities that 0 or 1 or 2 or 3 or 4 cars are defective

$$
\begin{aligned}
& P=\operatorname{Pr}(X=0)+\operatorname{Pr}(X=1)+\operatorname{Pr}(X=2)+\operatorname{Pr}(X=3)+\operatorname{Pr}(X=4)= \\
& =0.0003328+0.0026676+0.010689+0.028547+0.0571663=0.099403
\end{aligned}
$$

b) To find that at least cars are defective is the same that to find sum of probabilities that 4 or 5 or ... 3999 or 4000 cars are defective. Or, to find 1 - (0 or 1 or 2 or 3 cars are defective). Hence

$$
\begin{gathered}
P=1-\operatorname{Pr}(X=0)-\operatorname{Pr}(X=1)-\operatorname{Pr}(X=2)-\operatorname{Pr}(X=3)= \\
=1-0.0003328-0.0026676-0.010689-0.028547 \approx 0.95776
\end{gathered}
$$

