Answer on Question \#45526, Engineering, SolidWorks - CosmoWorks - Ansys

The probability that a man aged 60 will live to be 70 is 0.65 . What is the probability that out of 10 men, now aged 60 (i) exactly 9 will live to be 70 (ii) at most 9 will live to be 70 , and (iii) at least 7 will live to be 70 ?

Solution
Here we are dealing with binomial distribution and hence we will use formula for probability mass function:

$$
f(k ; n, p)=\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where $\mathrm{n}=60$ is number of randomly selected men and $\mathrm{p}=0.65$ is probability. (i)
exactly 9 will live to be 70 . here $\mathrm{k}=9$. so

$$
\operatorname{Pr}(X=9)=\binom{10}{9} 0.65^{9}(1-0.65)^{1}=0.0724917
$$

(ii)at most 9 will live to be 70 . This can be find as $1-\operatorname{Pr}$ (only 1 survives to 70) $-\operatorname{Pr}(0$ survived $)$. Hence

$$
\operatorname{Pr}(X \leq 9)=1-\binom{10}{1} 0.65^{1}(1-0.65)^{9}-\binom{10}{0} 0.65^{0}(1-0.65)^{10}=0.99946
$$

(iii) This can be find as

$$
\operatorname{Pr}(X=7)+\operatorname{Pr}(X=8)+\operatorname{Pr}(X=9)+\operatorname{Pr}(X=10)=0.513827
$$

