Answer on Question \#45204, Engineering, Other

Task: 1) Show that $\cos A \cdot \cos B=0.5(\cos (A+B)+\cos (A+B))$. Some English is essential in addition to the algebra. Note that cosine is an even function so that $\cos (A-B)=\cos (B A)$.
2) A mixer has a local oscillator at 1157 kHz and a bandpass filter centered at 455 kHz . What are the center frequencies of signals which would cause output from the filter? How is it that a radio receiver accepts only one channel of input signal?

Solution:

1)

$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B \Rightarrow$
$0.5(\cos (A+B)+\cos (A+B))=\cos A \cos B-\sin A \sin B+\cos A \cos B+\sin A \sin B=$ $=0.5 \cdot 2 \cos A \cos B=\cos A \cos B \Rightarrow$
$\cos A \cos B=\cos A \cos B$

So, we show that $\cos A \cdot \cos B=0.5(\cos (A+B)+\cos (A+B))$
2) What are the center frequencies of signals which would cause output from the filter?

Answer: $f_{c f}=f_{l}-f_{c}=1157-455=702 \mathrm{kHz}$

