Answer on Question \#44020 - Engineering - Other

Find the Inverse of these Functions:
$f(x)=$ square root $x+1$
$f(X)=x^{\wedge} 2+x-1$
$f(x)=2 x-4$
$f(x)=(4-x) / 3+x$

Solution:

Given the function $f(x)$ we want to find the inverse function, $f^{-1}(x)$.

1. First, replace $f(x)$ with y. This is done to make the rest of the process easier.
2. Replace every x with a y and replace every y with an x .
3. Solve the equation from Step 2 for y. This is the step where mistakes are most often made so be careful with this step.
4. Replace y with $f^{-1}(x)$.. In other words, we've managed to find the inverse at this point.

$$
\begin{gathered}
\# 1 \\
\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}+1 \\
\mathrm{y}=\sqrt{\mathrm{x}}+1
\end{gathered}
$$

Next, replace all x 's with y and all y 's with x :

$$
x=\sqrt{y}+1
$$

Now, solve for y :

$$
\begin{gathered}
\sqrt{y}=x-1 \\
y=(x-1)^{2}
\end{gathered}
$$

Finally replace y with $\mathrm{f}^{-1}(\mathrm{x})$.

$$
f^{-1}(x)=(x-1)^{2}, x \geq 0
$$

\#2

$$
\begin{gathered}
f(x)=x^{2}+x-1 \\
y=x^{2}+x-1
\end{gathered}
$$

Next, replace all x 's with y and all y 's with x :

$$
x=y^{2}+y-1
$$

Now, solve for y :

$$
\begin{gathered}
y^{2}+y-(1+x)=0 \\
y=\frac{-1 \pm \sqrt{1+4(1+x)}}{2}
\end{gathered}
$$

Finally replace y with $\mathrm{f}^{-1}(\mathrm{x})$.

$$
f^{-1}(x)=\frac{-1 \pm \sqrt{5+4 x}}{2}, x \geq-\frac{5}{4}
$$

$$
\begin{gathered}
f(x)=2 x-4 \\
y=2 x-4
\end{gathered}
$$

Next, replace all x 's with y and all y 's with x :

$$
x=2 y-4
$$

Now, solve for y :

$$
\begin{aligned}
& 2 y=x+4 \\
& y=\frac{x+4}{2}
\end{aligned}
$$

Finally replace y with $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{x+4}{2}
$$

$$
\begin{gathered}
f(x)=\frac{\text { \#4 }}{3}+x \\
y=\frac{4-x}{3}+x
\end{gathered}
$$

Next, replace all x 's with y and all y 's with x :

$$
x=\frac{4-y}{3}+y
$$

Now, solve for y :

$$
\begin{gathered}
3 x=4-y+3 y \\
3 x=4+2 y \\
y=\frac{3 x-4}{2}
\end{gathered}
$$

Finally replace y with $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{3 x-4}{2}
$$

