Answer on Question \# 43500, Engineering, Other

Task: Simplify the following Boolean function:
$F=A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C$, using K-map?

Solution:

So, we must do for simplifiing the following Boolean function:

1. Construct a K-map.
2. Find all groups of horizontal or vertical adjacent squares that contain 1.
a. Each group must be either rectangular or square with 2^{n} squares.
b. Each group should be as large as possible.
c. Each 1 on the K-map must be covered at least once. The same 1 can be included in several groups if necessary.
d. Nonessential groups are omitted. (A nonessential group does not contain a 1 that is not covered by any other group)
e. Adjacency applies to both vertical and horizontal borders.
3. Translate each group into a product term by eliminating any variable whose value changes from cell to cell.
4. Sum all the product terms.

$F=A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C:$

$F=C+A^{\prime} B$

Answer: $\mathrm{F}=\mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}$.

