Answer on Question \#43499, Engineering, Other

Expand the following Boolean functions into their canonical form:
i.

$$
\begin{aligned}
& f(X, Y, Z)=X Y+Y Z+X Z+X Y \\
& f(X, Y, Z)=X Y+X Y+X Y Z
\end{aligned}
$$

Solution.

x	y	z	Minterms	Notation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	$x^{\prime} y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z^{\prime}$	m_{6}
1	1	1	$x y z$	m_{7}

$$
\begin{aligned}
X Y+Y Z+X^{\prime} & Z+X^{\prime} Y \\
& =X Y\left(Z+Z^{\prime}\right)+\left(X+X^{\prime}\right) Y Z+X^{\prime}\left(Y+Y^{\prime}\right) Z+X^{\prime} Y\left(Z+Z^{\prime}\right) \\
& =X Y Z+X Y Z^{\prime}+X Y Z+X^{\prime} Y Z+X^{\prime} Y Z+X^{\prime} Y^{\prime} Z+X^{\prime} Y Z \\
& +X^{\prime} Y Z^{\prime}=X Y Z+X Y Z^{\prime}+X^{\prime} Y Z+X^{\prime} Y^{\prime} Z+X^{\prime} Y Z^{\prime} \\
& =m_{1}+m_{2}+m_{3}+m_{6}+m_{7}
\end{aligned}
$$

Answer: $X Y+Y Z+X^{\prime} Z+X^{\prime} Y=m_{1}+m_{2}+m_{3}+m_{6}+m_{7}$

$$
\begin{aligned}
& X Y+X^{\prime} Y+X^{\prime} Y Z=X Y\left(Z+Z^{\prime}\right)+X^{\prime} Y\left(Z+Z^{\prime}\right)+X^{\prime} Y Z \\
& =X Y Z+X Y Z^{\prime}+X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X^{\prime} Y Z \\
& =X Y Z+X Y Z^{\prime}+X^{\prime} Y Z+X^{\prime} Y Z^{\prime}=m_{2}+m_{3}+m_{6}+m_{7}
\end{aligned}
$$

Answer: $X Y+X^{\prime} Y+X^{\prime} Y Z=m_{2}+m_{3}+m_{6}+m_{7}$

