Sand is leaking from the back of a dump truck and forming a conical pile on the ground. The sand is leaking at the rate of 0.2 m 3 per hour. If the base radius of the pile is always 0.4 times the height, how fast is the base radius changing when the height is 1.5 m ? Show all the working.
(Volume of cone of height h and base radius r is $V=1 \pi r 2 h$.

Solution

Volume of cone of height h and base radius r is

$$
\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}
$$

The base radius of the pile is always 0.4 times the height:

$$
r=0.4 h \rightarrow h=\frac{r}{0.4}=2.5 r
$$

Volume of our cone is

$$
\mathrm{V}=\frac{1}{3} \pi r^{2} \cdot 2.5 r=2.5 \cdot \frac{1}{3} \pi r^{3}
$$

Volume flow rate is

$$
\frac{d V}{d t}=\frac{d}{d t}\left(2.5 \cdot \frac{1}{3} \pi r^{3}\right)=2.5 \frac{d}{d t}\left(\frac{1}{3} \pi r^{3}\right)=2.5 \pi r^{2} \frac{d r}{d t}=0.2 \frac{\mathrm{~m}^{3}}{\mathrm{hour}}
$$

When the height is 1.5 m base radius of the pile is $r_{1}=0.4 \cdot 1.5 \mathrm{~m}=0.6 \mathrm{~m}$.
The rate of change of base radius is

$$
\frac{d r}{d t}=\frac{1}{2.5 \pi \mathrm{r}^{2}} \frac{d V}{d t}=\frac{1}{2.5 \pi \cdot 0.6^{2}} \cdot 0.2 \frac{\mathrm{~m}}{\text { hour }}=\frac{2}{9 \pi} \frac{\mathrm{~m}}{\text { hour }} \approx 0.07 \frac{\mathrm{~m}}{\text { hour }}
$$

Answer: $0.07 \frac{\mathrm{~m}}{\text { hour }}$.

