Answer on Question \#41324, Engineering, Other

At a building site, an iron girder of mass 400 kg is suspended from a crane by a steel cable. Assume that the cable has a circular cross-section of diameter 24 mm .
a. What is the tensile force in newtons on the cable given that force $=$ mass $\times \mathrm{g}$ (where the acceleration due to gravity, $\mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}$). Ignore the mass of the cable.
(2 marks)
Solution:

$$
F=m g=400 * 9.8=3920 \mathrm{~N}
$$

Answer: 3920 N
b. Calculate the cross-sectional area of the cable in square metres.
(3 marks)
Solution:
For single-strand cable use the following formula to calculate the exact area of the cable where the diameter of the cable-strand is known:

$$
s=\pi\left(\frac{D}{2}\right)^{2}
$$

Where:
$s=$ area of a single strand
$\mathrm{D}=$ diameter of a single strand
$\pi=3.14$

$$
s=3.14 *\left(\frac{24 * 10^{-3}}{2}\right)^{2}=0.0004524=4.52 * 10^{-4} \mathrm{~m}^{2}
$$

Answer: $4.52 * 10^{-4} \mathrm{~m}^{2}$
c. Show that the stress on the cable is $8.67 \times 10^{6} \mathrm{~N} \mathrm{~m}^{-2}$. Again ignore the mass of the cable. (3 marks)

Solution:

The stress is

$$
\sigma=\frac{F}{S}
$$

where $\mathrm{F}=3920 \mathrm{~N}$ is force, and $s=\frac{\pi d^{2}}{4}$ is the cross-section of the cable.

$$
\sigma=\frac{3920}{4.52 * 10^{-4}}=8.67 * 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{-2}
$$

Answer: $8.67 * 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{-2}$
d.If the Young's modulus of the steel cable is $200 \times 10^{9} \mathrm{~N} \mathrm{~m}^{-2}$, calculate the strain in the cable. (3 marks)

Solution:

Thus,

$$
\text { Strain }=\frac{\text { Stress }}{E}=\frac{8.67 * 10^{6}}{200 * 10^{9}}=0.00004335=43.35 * 10^{-6}
$$

Answer: $43.35 * 10^{-6}$
e.When it is loaded with the iron girder, the steel cable stretches by 0.78 mm . Calculate what the original length of the steel cable was (i.e. its length prior to loading).
(4 marks)

Solution:

$$
\text { Strain }=\frac{\Delta L}{L}
$$

Thus,

$$
L=\frac{\Delta L}{\text { Strain }}=\frac{0.78 * 10^{-3}}{43.35 * 10^{-6}}=18 \mathrm{~m}
$$

Answer: 18 m .

