Answer on Question\#40870 - Physics - Molecular Physics | Thermodynamics

An ideal gas flows into one end of a porous cylinder at a temperature of 400 K degrees and out the other end at a temperature of 600 K degrees. The input pressure is 20 atmospheres and the output pressure is 10 atmospheres. If the input volume flow rate is $100 \mathrm{~cm}^{\wedge} 3 / \mathrm{sec}$ what is the output flow rate?

Solution:

$\mathrm{T}_{1}=400 \mathrm{~K}-$ initial temperature of a gas
$\mathrm{T}_{2}=600 \mathrm{~K}-$ final temperature of a gas
$\mathrm{p}_{1}=20 \mathrm{~atm}$ - input pressure of a gas
$\mathrm{p}_{2}=10 \mathrm{~atm}-$ output pressure of a gas
$\mathrm{V}_{1}=100 \mathrm{~cm}^{3}-$ input volume of a gas per 1 second
V_{2} - input volume of a gas per 1 second

We can use the combined gas equation (for a portion of gas per one second)

$$
\begin{gathered}
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \\
V_{2}=\frac{p_{1} V_{1} T_{2}}{T_{1} p_{2}}=\frac{20 \mathrm{~atm} \cdot 100 \mathrm{~cm}^{3} \cdot 600 \mathrm{~K}}{400 \mathrm{~K} \cdot 10 \mathrm{~atm}}=300 \mathrm{~cm}^{3}
\end{gathered}
$$

Hence, input volume flow rate is $\frac{300 \mathrm{~cm}^{3}}{s}=300 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$.
Answer: input volume flow rate of the gas is $300 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$.

